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SUMMARY 

Several solution acceleration techniques, used to obtain steady state CFD solutions as quickly as possible, are 
applied to an implicit, upwind Euler solver to evaluate their effectiveness. The implicit system is solved using 
either AD1 or ILU and the solution acceleration techniques evaluated are quasi-Newton iteration, Jacobian 
freezing, multigrid and GMRES. ILU is a better preconditioner than AD1 because it can use larger time steps. 
Adding GMRES does not always improve the convergence. However, GMRES preconditioned with ILU and 
multigrid can take advantage of Jacobian fieezing to produce an efficient scheme that is relatively independent of 
grid size and grid quality. 
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INTRODUCTION 

Computational fluid dynamics has seen great advances in the range of aerodynamic problems that can 
be solved. Higher-order upwind schemes, improved turbulence models and advanced chemistry models 
have improved the flow model accuracy for complex flows, while multiblock grids and chimera schemes 
have improved the spatial accuracy for complex geometries. However, not many advances have been 
made in the solution methods for these advanced capability solvers. Solution acceleration schemes, 
which are used to obtain steady state CFD solutions as quickly as possible, are now in demand. 

There are three broad classes of techniques used for solution acceleration: increased signal 
propagation, optimization, and reduced computation. One of the most common increased signal 
propagation schemes is implicit time integration. The increased stability of implicit schemes compared 
with explicit schemes allows a much larger time step to be used. The high cost of directly inverting the 
implicit correction matrix has led to the use of approximate factorization schemes such as AD1 and ILU 
to obtain simpler matrix systems. An extension of implicit time integration is switched evolu- 
tion/relaxation. The usual implicit time integration scheme is converted to a Newton iteration 
scheme as the solution converges by letting the time step approach infinity. 

Other popular increased signal propagation schemes are local time stepping and multigrid. Local time 
stepping uses the largest time step allowable at each control point to increase the signal propagation 
through each cell. Multigrid uses the faster signal propagation across the domain on a coarse grid while 
maintaining the higher solution accuracy produced on a fine grid. 

The optimization-based schemes are those related to conjugate gradient schemes. The non-linear 
GMRES scheme is very similar to numerical optimization. It obtains the optimum solution in a Krylov 
subspace that is spanned by the search direction vectors. The search directions and the optimum step 
size are obtained using finite difference sensitivity calculations. 
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One reduced computation scheme that is only applicable to implicit schemes is Jacobian freezing. As 
the solution converges, the correction matrix becomes almost constant. Freezing the Jacobians and 
therefore the correction matrix can significantly reduce the CPU time per iteration. This is also 
particularly usehl when GMRES is used, because the Jacobians can be frozen during the sensitivity 
analysis and not only from one iteration to the next. 

Preconditioning is an important concept in solution acceleration. Iterative schemes will converge 
quicker when the eigenvalues of the system are clustered. Preconditioning is used to modify the basic 
system in order to improve the performance of other solution schemes. Because the best system is the 
identity operator, where all of the eigenvalues are identically one, most preconditioning is accomplished 
by using an approximate inverse operator to premultiply the system. 

This paper presents a summary of the solution techniques, followed by a parametric study of the 
effectiveness of the various schemes. Several grids are used to examine the relative strengths of the 
methods. The baseline CFD code is a first-order, upwind Euler equation solver that uses 
Steger/Warming flux vector splitting for both the residual and implicit correction operators. 

TIME INTEGRATION OF THE EULER EQUATIONS 

The two-dimensional, unsteady Euler equations in curvilinear co-ordinates can be written in the form 

where h is the cell area, u = (p, pu, pv, ~ e ) ~ ,  r(u) is the residual and f(u) and g(u) are the flux vectors in 
the r- and q-hection respectively. For steady state solutions, r(u) = 0 and we are interested in driving 
the residual to zero as quickly as possible. The equations will be presented in finite difference form. 
However, the calculations are performed using a cell-centred finite volume scheme. 

Time integration schemes are generally applied in an iterative fashion as 

u"" = U" + Au, 
NAu = -L(u"), 

where N is a linear operator and L(u) is a non-linear operator given by 

L(u) = Arr(u), A7 = Atlh. (3) 
For filly implicit schemes the correction operator can be rewritten as 

N = I + AragA + Ara,,B, (4) 

where the flux Jacobians A and B are given by 

The matrix N has five non-zero block diagonals for a first-order, upwind scheme approximation of the 
flux Jacobians. This matrix is costly to invert, so approximate factorization schemes have often been 
used to solve the system. 

ADI 

One common technique used to solve the system (2b) is the alternating direction implicit (ADI) 
scheme.' The correction matrix is factored as 
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where the two matrix factors are block tridiagonal and are much easier to invert than the full N-matrix. 
The advantage of this scheme is that each factor can be solved one row or one column at a time, thus 
reducing the storage requirements. However, the factorization error places a restriction on the allowable 
time step. 

IL u 
Incomplete LU decomposition is another technique used to solve the system (2b). The ILU(T) class of 

schemes is particularly attractive.2 The LU factors are formed such that the sparsity pattern of the factors 
is directly related to the sparsity pattern of the original matrix and the level of fill-in is denoted by 1: 

N LU, L U = N + R .  (7) 
The matrix R has terms restricted to locations outside the sparsity pattern of the N-matrix. In other 

words, the product LU equals the original sparsity pattern terms of N exactly, plus terms that fall outside 
the original sparsity pattern. The most basic scheme is the no-fill-in, ILU(0) scheme, which has non- 
zero blocks restricted to the location of non-zero blocks of the N-matrix. This scheme has the advantage 
that there is no splitting error associated with the desired matrix terms. However, the error terms are 
dependent on the time step. One disadvantage, which can be turned into an advantage, is that the entire 
system must be solved at once, which increases the storage required. 

Only the ILU(0) scheme will be presented in this paper. The ILU(1) scheme produces better 
convergence in terms of iterations, but the increased CPU time per iteration decreases the convergence 
in terms of CPU time. 

SOLUTION ACCELERATION TECHNIQUES 

Switched evolution/relaxation 

Newton iteration schemes converge very quickly in a neighbowhood of the final solution but can 
diverge in regions away fiom the final solution. Note that if At + co, equation (2b) becomes a Newton 
iteration scheme. The switched evolution/relaxation (SER) scheme is formed by letting At grow as the 
solution evolves in order to avoid the divergence problems away fiom the so l~ t ion .~  In order to retain the 
advantages of local time stepping, the CFL number is defined as 

CFL = CFLO/rave, 

where CFLo is the initial CFL number and rave is the normalized density residual norm. 

Frozen Jacobians 

When the solution becomes close to the converged solution, the system becomes more linear and the 
Jacobian matrices A and B become nearly constant. This behaviour can be exploited by freezing the 
Jacobian terms for seveml iterations to reduce the computational cost!*' Now the system becomes 

N(um)Au = -L(u"), m<n.  (9) 

In the current implementation, m is determined fiom rave, the normalized norm of the density residual. 
Initially, m = n until rave < then m is reset to n when rave is reduced by a specified order of 
magnitude. 

The increased storage of the ILU(T) scheme now becomes an advantage. If the Jacobian t e r n  are 
constant, then the LU factors can be retained and the new system inversion only requires two triangular 
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solves. However, the reduced storage for the AD1 scheme is now a disadvantage: the tridiagonal matrix 
systems must be resolved even though the matrix terms are the same. 

Multigrid 

Multigrid is a solution acceleration scheme that maintains the solution accuracy available on a fine 
grid but takes advantage of the increased signal propagation speed and reduced computational cost of a 
coarse grid."* For the non-linear problem on a fine meshf, 

Lf(Uf) = 0, (10) 

an equivalent problem exists on a coarse mesh c, 

where C{ is a collection operator fromfto c. The coarse grid equation is solved for Auc and the fine 
coarse grid correction is obtained using 

,,n+l = U? + D;(Au,), 
where D; is a distribution operator from c to$ The coarse grid is obtained by dropping every other fine 
grid node point in each direction. The algorithm is applied in a V-cycle, where equation (1 1) is solved on 
the way down, with no subiterations, and equation (1 2 )  is used on the way up. The multigrid scheme will 
be denoted MG(Ngrid), where Ngfid indicates the number of multigrid grid levels. 

(12) 

GMRES 

The non-linear GMRES algorithm can be applied to non-symmetric, non-linear systems.' It locates 
the best solution to the problem Over a k-dimensional Krylov subspace. The main difference from the 
linear GMRES algorithm is that the subspace is built using finite difference sensitivities of the residual 
to changes in the solution. For the differential system 

F(u) = 0 (13) 

ofKnon-linear equations in Kunknowns, the directional derivative of F at u in the p-direction is defined 
as 

Computationally, the directional differential is evaluated using a finite difference where E is selected 
based on the magnitude of F(u). 

Given a starting solution u", a new solution is obtained by locating the optimum solution in a k- 
dimensional subspace spanned by the search direction vectors pi: 

u"+1= un + ajpj. 
j= I 

The k orthonormal search directions are obtained as follows. The first search direction is set opposite to 
the residual vector: 

= -F(u"), PI = P,/llPlll. (16) 
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Figure 1 .  Grids and pressure dihbutions for M =  2.00,20" ramp duct using plain AD1 scheme (left, idow; right, outflow; top, 
symmetry; bottom, solid wall) 

The remaining search directions are obtained by performing the following forj = 1,2, . . . , k - 1 : 
i 

pj+, = Qu"; pj) - c h,p,, ( 174 

~ j + l  = f i j+ l / I I i j+1  I I 9  (1%) 

h, = F(u"; p,)-pi, (18) 

i= 1 

where - 

so that each new search direction is orthogonal to the previous search directions. 
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Figure 2. Convergence histories for ADI-based schemes on normal grid (CFL = 10) 
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The optimum weighting coefficients aj are chosen to minimize the new residual norm 

k 

j =  I 
F(u") + ajF(u"; pj) 

Solving this least squares problem leads to a k x k system that is easy to solve. 
Using GMRES with a large number of search directions will not improve the initial convergence rate 

for highly non-linear problems. This is because the optimum new solution is derived using a Taylor 
series that has been truncated to first order, so the new solution is only optimum in a linear sense. 
Therefore, until the correction matrix has become more linear, a small number of search directions will 
reduce the number of computations while not effecting the convergence. Computationally, this is 
performed using a variable4 GMRES scheme, denoted VGMRES(k), where k denotes the final number 
of search directions. The local k varies according to 

I k  for n > n k ,  
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Figure 3. Convergence histories for ILU(0)-based schemes on normal grid (CFL = 10) 
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I. 

where nk is the VGMRES iteration number where kIoca, = k and remains constant for larger n. For this 
study, Lit=2 and nk=5.  In addition, VGMRES(k) is not begun until a 1.1-order-of-magnitude 
reduction of the residual is reached using the preconditioner schemes alone. This M e r  reduces the 
non-linearity of the system before the VGMRES scheme is applied. 

PRECONDITIONING 

The convergence rate of the GMRES algorithm depends on the eigenvalue distribution of the system 
matrix. The more the eigenvalues are clustered together near unity, the faster GMRES will converge. 
Preconditioning changes the system to provide a more favourable eigenvalue distribution." Because the 
identity operator has the best eigenvalue distribution (they are all equal to one), most preconditioning is 
done using an approximate inverse of the residual operator. 

Consider the set of flow equations of the form 

L(u) = 0. 
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Figure 4. Convergence histories for ILU(O>based SER schemes on normal grid (CFL = 10) 

The GMRES algorithm can be applied directly to this system by setting F(u)=L(u). However, the 
eigenvalues of the system L will be scattered and the convergence will be slow. Computer codes that use 
an iterative approach already have a scheme, e.g. AD1 and multigrid, that is used to advance the solution. 
Each scheme includes some form of approximate inverse to the operator in (21). In other words, the 
existing solution method is of the form 

u"" = U" + Au, AU = N;;L(u"). (22) 

The system matrix is preconditioned by the matrix N-' . The GMRES algorithm can be applied to the 
preconditioned system by setting 

F(u = N;,L(u"). (23) 

In other words, preconditioned GMRES operates on the correction provided by the preconditioner. 



SOLUTION ACCELERATION SCHEMES IN CFD 1031 

N ,  

*- 
l o .  5. m. IS. 20. 2s. 30. 

time (sec.1 

a) MG+ADI 

N 

0 
-e- VGMRESIIOl+MG(PI+AM 

VGMRESllO)+MG(3l+ADI 
--b VGMRESllOl+MG~4l+AC4 

N 

- 
fi - 2 '  
gP; 

? 
? 0. 5. 10. 1s. 20. 2s. 

0 - 
? 

time Isec.1 

b) VGMRES(lO)+MG+ADI 

VGMAESl lOl+ILUIOI 
VGYRESIlOI+MGlP I+ILUOI 
VGMRESIlOI+MG13~+1LUlO~ 
VGYRESI1OI+MGl4I+LU(Ol 

time lsec.1 

d) VGMRES(IO)+MG+ILU(O) 

I. 

Figure 5. Convergence histories with frozen Jacobian on normal grid (CFL = 10) 

RESULTS AND DISCUSSION 

A parametric study was performed to evaluate the effects of grid size and gnd quality on the 
convergence of the various schemes. The problem is an M= 2.00, inviscid flow through a 20" ramp 
duct. The three grids that were used are shown in Figure 1, along with a solution obtained using the plain 
AD1 scheme. CFL= 10 is used unless stated otherwise and local time stepping is used throughout. 
Calculations were run on a Cray C-90 for 400 work units or until the average residual was reduced by 1 1 
orders of magnitude. One work unit represents the evaluation of the residual on the fine grid. When MG 
or VGMRES is used, each iteration requires more than one work unit. After the Jacobians are frozen, 
they are updated after a two-order-of-magnitude reduction of the residual for the n o d  and scrambled 
grids and after a one-order-of-magnitude reduction of the residual for the large grid. Note that the 
convergence history plots have markers at every second iteration with VGMRES and at every loth 
iteration without VGMRES. 
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Figure 6. Convergence rate behaviour on normal grid 

A useful measure of the convergence rate is given by 

1 
= workz - work, ’ ’ cr = 1 - t-r 

I. 

I. 

(24) 

which represents the average fractional amount of error removed for each work unit. The average 
convergence rate data are based on the entire flow calculation. The values are scaled using 

Cref crs = cr - , 
C 

where C is the CPU time per work node. This scaling takes into account the varying computational costs 
associated with the work units for various schemes. The reference C is from the ILU(0) solution on the 
normal grid. 

Convergence histories for the normal grid with the ADI-based schemes are shown in Figure 2. Figure 
2(a) shows the results for MG(Nfid) + ADI. Using more than two multigrid levels at this CFL number 
does not improve the convergence. This is because the time step on the coarse grids is larger than the 
time step on the fine grid. Therefore the factorization error on the coarse grids is larger than the 
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Figure 7. Convergence rate behaviour on large grid 

factorization error on the fine grid and this prevents the corrections from the coarsest grid levels from 
helping the solution. Figure 2@) shows the results for VGMRES(k) + ADI. Adding VGMRES improves 
the final convergence rate significantly and k= 10 converges the fastest. Figure 2(c) shows the results 
for VGMRES(10) + MG(NMd) + ADI. Adding MG does not improve the convergence for this case. 
Figure 2(d) shows the results for VGMRES(k) + MG(4) + ADI. Increasing k decreases the convergence 
rate for this case. 

Convergence histories for the normal grid with the ILU(0)-based schemes are shown in Figure 3. 
Figure 3(a) shows that plain ILU(0) converges slower than plain ADI. However, increasing the number 
of multigrid levels improves the convergence, so that MG(4)+ILU(O) converges about twice as 
fast as MG(4)+ADI. Figure 3(b) shows that k = 5  produces the best convergence for the 
VGMRES(k) + ILU(0) schemes. Figure 3(c) shows that adding MG to VGMRES( 10) + ILU(0) 
improves the convergence for this case. Figure 3(d) shows that R= 10 produces the best 
VGMRES(R) + MG(4) + ILU(0) case. 

Convergence histories for the normal grid with the ILU(0)-based SER scheme are shown in Figure 4. 
Figure 4(a) shows that plain ILU(O), SER converges more than twice as fast as plain ILU(0). SER also 
improves the other schemes, except for VGMRES(2O) + MG(4) + ILU(0). 
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Figure 8. Convergence rate behaviour on scrambled grid 

Figure 5 shows the convergence histories for selected AD1 and ILU(0) schemes using h z e n  
Jacobians. Freezing the Jacobians improves the ADI-based schemes slightly but improves the ILU(0) 
schemes significantly. 

A summary of the average convergence rates for the normal grid is shown in Figure 6. Figure 6(a) 
compares the ADI-based schemes. There is an optimum CFL number due to the splitting error that is a 
function of the time step. Note that the schemes that use MG have a lower optimum CFL number. This is 
because the time step on the coarse grids is larger than the time step on the fine grid. Figure 6(b) 
compares the ADI-based schemes using frozen Jacobians. Freezing the Jacobians has a slight benefit in 
the scaled convergence rate. The oscillation in the convergence rate data is attributed to the non- 
linearity of the system. Figure 6(c) compares the ILU(0)-based schemes. The convergence rate increases 
over the tested range and does not show an optimum CFL number like the ADI-based schemes. 
However, the convergence rate does appear to be approaching an asymptote. Figure 6(d) compares the 
ILU(O>based, frozen Jacobian schemes. Freezing the Jacobians has a dramatic effect on the 
convergence rate because it also freezes the LU factors. 
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A summary of the average convergence rates for the large grid is shown in Figure 7. The ADI-based 
schemes still have an optimum CFL number, but it is increased owing to the smaller cell sizes. The 
convergence rate of the MG(5) + ILU(0) scheme is almost as high as that of the MG(4) + ILU(0) 
scheme on the normal grid. This demonstrates the major advantage of multigrid: the convergence rate 
can be made relatively independent of system size. 

A summary of the average convergence rates for the scrambled grid is shown in Figure 8. Including 
VGMRES helps all the schemes considerably. Without VGMRES, both the ADI- and ILU(0)-based 
schemes do not converge for CFL > 20. Adding VGMRES produces an acceptable scheme for these 
high CFL numbers. 

CONCLUSIONS 

The ILU(0) scheme can take full advantage of the frozen Jacobian and multigrid schemes to produce a 
very efficient solution technique. The time to reach a converged solution can be reduced by a factor of 
five compared with the plain ILU(0) scheme. The major advantage of the ILU(0) scheme over the AD1 
scheme is that the factorization error is not directly proportional to the time step. This allows the ILU(0) 
scheme to take advantage of larger time steps, which makes the multigrid scheme more effective. 
However, the ILU(0) factorization error does limit the effectiveness of the quasi-Newton scheme. Also, 
the ILU(0) scheme can take better advantage of the frozen Jacobians, because the LU factors do not 
have to be recomputed when the Jacobians are hzen ,  whereas the AD1 scheme still requires two 
tridiagonal matrix solves. Adding VGMRES does not consistently improve convergence in the current 
implementation. For the two nice grids, when VGMRES is added to the multigrid, the convergence is 
reduced at high CFL numbers, but for the scrambled grid, VGMRES does produce an acceptable 
scheme for high CFL numbers when the other schemes break down. Adding VGMRES does, however, 
produce acceptable convergence rates that are relatively independent of both grid size and grid quality. 

REFERENCES 

1. R. M. Beam and R. F. Warming, ‘An implicit finitedifference algorithm for hyperbolic systems in conservation-law form’, 

2. J. A. Meijerink and H. A. van der Vorst, ‘Guidelines for the usage of incomplete decompositions in solving sets of linear 

3. W. A. Mulder, ‘Mdtigrid relaxation for the Euler equations’, A Compur. Phys., 60,23>252 (1985). 
4. H. E. Bailey and R. M. Beam, ‘Newtong method applied to finite- difference approximations for the steady-state compressible 

5. D. B. Kim and I? D. Orkwis, ‘Jacobian update- strategies for quadratic and nearquadmtic convergence of Newton and 

6. A. Brandt, ‘Multi-level adaptive solutions to boundary-value problems’, Marh. Comput., 31,333-390 (1977). 
7. A. Jameson, ‘Successes and challenges in computational aerodynamics’, Pmc. A U A  8th Computational Fluid Dynumics 

8. A. A. Amone and S. S. S t e m .  ‘Inviscid cascade flow calculations using a multigrid method’, ASME Puper 89-GT-22, AIAA, 

9. L. B. Wigton, N. J. Yu and D. P. Young, ‘GMRES acceleration of computational fluid dynamics codes’, AM Paper 85-1494, 

10. G. Bmssino and V. Sonnad, ‘A comparison of direct and preconditioned iterative techniques for sparse, unsymmctric systems 

1 Compur. Phys., 22, 87-110 (1976). 

equations as they occur in practical problems’, 1 Compur. Phys., 44, 134-155 (1981). 

Navier-Stokes equations’, 1 Compur. Phys., 93. 108-127 (1991). 

Newton-lie implicit schemes’, AIAA Paper 93-0878, 1993. 

Cod, CP-87-1184, pp. 1-35. 

New York, 1987, 1989. 

1985. 

of linear equations’, 1nr.j. numer methods eng., 28, 801-815 (1989). 


